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A simplified one-dimensional partial differential equation for the integral
axial momentum flux during the deceleration phase of single-pulsed transient
incompressible jets is derived and solved analytically. The wave speed of the derived
first-order nonlinear wave equation shows that the momentum flux transient from
the deceleration phase propagates downstream at twice the initial jet penetration rate.
Transient-jet velocity data from the existing literature is shown to be consistent with
this derivation, and an algebraic analytical solution matches the measured timing and
decay of axial velocity after the deceleration transient. The solution also shows that
a wave of increased entrainment accompanies the deceleration transient as it travels
downstream through the jet. In the long-time limit, the peak entrainment rate at the
leading edge of this ‘entrainment wave’ approaches an asymptotic value of three times
that of the initial steady jet. The rate of approach to the asymptotic behaviour is
controlled by the deceleration rate, which suggests that rate-shaping may be tailored
to achieve a desired mixing state at a given time after the end of a single-pulsed jet. In
the wake of the entrainment wave, the absolute entrainment rate eventually decays to
zero. The local injected fluid concentration also decays, however, so that entrainment
rate relative to the local concentration of injected fluid remains higher than in the
initial steady jet. An analysis of diesel engine fuel-jets is provided as one example of
a transient-jet application in which the considerable increase in the mixing rate after
the deceleration phase has important implications.

1. Introduction
While steady jets have been widely studied and are well understood, the mixing

and entrainment processes of decelerating transient jets are not well understood. A
few studies have shown that during the deceleration phase of single transient jets,
entrainment can be increased by a factor of two or more compared to steady jets
(Borée et al. 1997; Johari & Paduano 1997). Bremhorst & Hollis (1990) observed
similar behaviour in fully modulated multi-pulsed jets. Johari & Paduano (1997)
proposed that the increase in entrainment may be due to a change in the balance of
source fluid for the growth of large structures in the jet flow. They speculated that
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118 M. Musculus

during a deceleration, decreasing axial flow in the jet provides less fluid for the growth
of large structures, so that ambient fluid entrainment must increase to compensate.
Breidenthal (1986) proposed a similar but converse mechanism for ‘accelerating’ jets,
where entrainment decreases to compensate for increasing velocity and vorticity from
the jet source. Indeed, later experiments showed that accelerating jets display less
entrainment than steady jets (Kato, Groenewegen & Breidenthal 1987; Zhang &
Johari 1996). Recently, Breidenthal (2008) extended this argument to a whole class
of turbulent flows, for which acceleration causes dissipation and entrainment rates to
decrease.

The increased entrainment in the decelerating part of the jet also propagates
downstream to affect the initial steady jet. Borée et al. (1997) measured the spatial
and temporal evolution of axial velocities after a deceleration phase and showed
that the region of increased entrainment grows in axial extent as it propagates
downstream. The ways that the effects of a deceleration phase evolve spatially and
temporally are very important for applications of transient jets, where mixing of jet
and ambient fluids significantly influence the performance of practical devices. One
important example of this type of application is the fuel-injection process in diesel
engines. Recent measurements have shown that diesel jets experience greater mixing
rates during and after a deceleration phase (Musculus et al. 2007). The increased
mixing is desirable because it can lead to lower soot formation by minimizing fuel-
rich mixtures, but at the same time, over-mixing can lead to mixtures that are too
fuel-lean to achieve complete combustion (Musculus et al. 2007; Genzale, Reitz &
Musculus 2008). If mixing is to be optimized for various applications, understanding
of the spatial and temporal evolution of the increased entrainment region after a
deceleration phase is important.

In this study, using appropriate assumptions that are supported by experimental
observations, a simplified partial differential equation is derived to analyse the mixing
and entrainment characteristics of incompressible round turbulent single-phase jets
during and after a transient deceleration. The goal of the analysis is not to simulate
decelerating jets with high fidelity but rather to provide a simplified analysis that
reveals the overall evolution of entrainment in decelerating jets. As will be shown, the
derived nonlinear wave equation for jet axial momentum has an analytical solution,
for which a wave of increased entrainment propagates downstream. The analysis
shows that entrainment can increase by as much as a factor of three during and
after the transient deceleration, which helps to explain the rapid mixing observed
in decelerating jets. An analytical solution to the governing equation is shown to
agree well with experimental data from several decelerating-jet studies. Finally, some
implications for one transient-jet application, the diesel engine, are discussed.

2. Formulation of the problem
2.1. Governing equation

The mixing and spreading characteristics of steady incompressible turbulent single-
phase jets have been well established in numerous studies in the scientific literature
and in textbooks (for example Abramovich 1963; Hinze 1975; Schlichting 1979).
Much information is also available for the initial penetration during the transient
start-up (see Hill & Ouellette 1999; Joshi & Schreiber 2006; Sangras, Kwon & Faeth
2002 and the references cited therein). Comparatively little information is available
for the deceleration phase at the end of a transient jet. In this section, a partial
differential equation for the jet axial momentum during the deceleration transient is
derived.
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Figure 1. Illustration of the jet model coordinate system and integral momentum
flux transport.

Consider a conical jet issuing from a round nozzle, as depicted in figure 1. The
dashed lines indicate the jet boundaries, which are defined according to the axial-
velocity profile, as described below. The fully developed mean axial-velocity profile
is well represented by a Gaussian error curve for both single-phase (Hinze 1975;
Schlichting 1979) and two-phase (Wu, Santavicca & Bracco 1984; Doudou 2005)
steady jets, but Abramovich (1963) also proposed a more versatile polynomial form:

ū (x, ξ )

ūc (x)
= (1 − ξα)2 . (2.1)

In (2.1), ūc (x) is the turbulent mean axial velocity on the jet centreline at downstream
distance x and ū (x, ξ ) is the mean axial-velocity component as a function of the
non-dimensional radial coordinate ξ = r/R, where r is the radial coordinate and R
is the jet width shown in figure 1. Abramovich (1963) used α = 1.5, for which (2.1)
approximates a Gaussian error curve, to match experimentally measured velocity
profiles. Later, it will be shown that the consequence of the velocity profile on the
integral axial momentum of the jet can be reduced to a single coefficient, so that the
exact form of the velocity profile is not critical.

The polynomial form of (2.1), rather than a Gaussian error curve, is useful because
of two important features. First, (2.1) is particularly convenient for the mathematical
analysis of this study because it does not have the infinite ‘wings’ of a Gaussian
curve, so that the jet boundary is unambiguous. Here, the jet boundary is at ξ = 1,
where ū (z, ξ ) = 0. This boundary definition corresponds to the position at which the
axial velocity on a Gaussian error curve fit is approximately 3 % of the centreline
velocity. (A slight adjustment to the jet spreading angle can effectively account for
fluid momentum in the low-velocity wings). Second, and more importantly, larger
values of α produce flatter profiles that are similar to those in the developing jet,
approaching a uniform ‘top-hat’ velocity profile as α approaches infinity. This profile
adjustment feature of (2.1) is useful for approximating the behaviour of the jet in the
developing near-nozzle region, where the radial velocity profiles are flatter than in the
developed jet.

Shown in figure 2 is a comparison of the velocity profiles of (2.1) with measurements
from Crow & Champagne (1971) for the developing region of a Red =105 steady air
jet. The abscissa scale is the radial position r in the jet normalized by the radius r0.2,
where the mean axial velocity is 20 % of its centreline value. For each downstream
measurement location, the value of α in (2.1) is chosen empirically to fit the measured
data. In general, with judicious choice of α, the agreement between (2.1) and measured
data is reasonable, except in the wings of the jet. At large radii, (2.1) has zero velocity,
whereas the measured velocity is small but non-zero. At eight diameters downstream
of the nozzle (z/D0 = 8), where turbulent jets typically become fully developed (Hinze
1975), a Gaussian error curve (dashed line) fits the measured data quite well, as does
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Figure 2. Mean axial-velocity profiles in the developing region of a Red = 105 steady air jet
with exit velocity U0 = 32 m s−1 at the exit of a nozzle with diameter D0 =50.8 mm. Measured
data (circles) are from Crow & Champagne (1971); the profiles from (2.1) (solid lines) are
shown at five different downstream locations; and a Gaussian error curve (dashed line) is
shown for the farthest downstream measurement location. For clarity, the data and curves
for each successive measurement location are offset vertically by 0.5 ū/ūc . The scale on the
abscissa is the radial position r in the jet normalized by the radius r0.2, where the mean axial
velocity is 20 % of its centreline value.

(2.1), using α = 1.5. At greater distances downstream, the profile is self-similar, so that
no further adjustment from α = 1.5 is required.

With (2.1) and the jet boundaries defined, the integral momentum M in the axial
direction for a differential control volume within the jet (figure 1) is

M = ρA¯̄u dx, (2.2)

where ρ is the density and ¯̄u is the mean axial velocity averaged over the jet cross-
sectional area A:

¯̄u(x) =

∫
ū (x, ξ ) dA∫

dA

=
α2

(α + 1) (α + 2)
ūc(x). (2.3)

The total axial momentum flux Ṁ integrated over the jet cross-section is

Ṁ = ρ

∫
ū2 (z, ξ ) dA = βπR2ρ ¯̄u

2
, (2.4)

where β =
6 (α + 1) (α + 2)

(3α + 2) (2α + 1)
. (2.5)

In the near-nozzle region, where α approaches infinity and the profile is uniform, (2.3)
and (2.4) show that ūc (x) = ¯̄u (x) and β =1, consistent with a uniform or ‘top-hat’
exit velocity profile. For a fully developed jet with α =1.5, ūc (x) =

(
35/9

)
¯̄u (x) and

β = 105/52 or approximately β = 2. Importantly, the above integral analysis leading
to (2.4) shows that the effect of the velocity profile on the total momentum flux can
be represented by a ‘single factor’ β . For any arbitrary velocity profile, therefore, the
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total momentum flux is simply the product of some coefficient β and the momentum

flux πR2ρ ¯̄u
2

calculated using the average velocity ¯̄u.
Using the expression for R in figure 1, (2.4) can be rearranged for the cross-

sectionally averaged velocity,

¯̄u =

√
Ṁ

πβρ

cot(θ/2)

x ′ , (2.6)

where θ is the full spreading angle at the edge of the jet, where ξ = 0. For a steady
jet, the integral axial momentum flux Ṁ is constant and equal to Ṁ0 at the nozzle
exit (Schlichting 1979), so that (2.6) can be written as

¯̄usteady = R0 cot (θ/2)
¯̄u0

x ′√β
, (2.7)

where ¯̄u0 is the velocity at the nozzle exit of radius R0. Using (2.3), (2.7) gives the
familiar 1/x ′ dependence of the centreline velocity relative to the virtual origin. Note
that in typical centreline velocity correlations, the virtual origin is located about three
diameters downstream of the nozzle (Borée, Atassi & Charnay 1996; Reynolds et al.
2003) rather than behind it, as in figure 1. In such correlations, β is effectively treated
as constant, so that the centreline velocity fit on 1/x ′ is improved if the origin is
shifted to a downstream position at which the velocity profile approaches self-similar
behaviour and β is constant. Here, however, the virtual origin defines the ‘width’
of the jet, rather than the centreline velocity, and β accounts for the developing
velocity profile. The appropriate position for the virtual origin in this development
is therefore behind the nozzle exit (figure 1). With the differential momentum and
momentum flux defined in (2.2) and (2.4), a partial differential equation for the
transport of momentum in the jet during the deceleration transient may be derived if
the following six simplifying assumptions are applied:

(i) Density is constant throughout the jet, which implies that the jet is effectively
isothermal and that the density of the injected fluid is equal to that of the ambient. For
flows with different injected and ambient fluid densities, an effective nozzle diameter
may be assigned according to the square root of the density ratio (Ricou & Spalding
1961; Nathan et al. 2006).

(ii) Turbulent (and molecular) viscous forces acting on the control volume are
neglected. The normal viscous forces are typically small compared to pressure forces,
and viscous shear forces at the outer radius of the jet control volume can be neglected
also, since velocities and their gradients at the boundary are small.

(iii) Axial mixing of momentum due to molecular and turbulent diffusion is
neglected. As a result, only axial convection of momentum in figure 1 is considered in
the development of the governing equation for momentum transport. The implications
of this simplification are addressed later, after the development of the momentum
transport equation.

(iv) The net force due to any axial pressure gradient is assumed negligible. This is
a reasonable assumption for steady jets (Hinze 1975), and the appropriateness of this
assumption for decelerating jets also will be addressed later.

(v) The jet cross-sectional area remains constant during and after the deceleration
phase. Several decelerating-jet experiments show that the spreading angle remains
approximately constant, or even increases slightly, during the deceleration transient.
Atassi, Boree & Charnay (1993) and Borée et al. (1996) observed that the width of
the normalized mean axial-velocity profile increased by at most 15 % at the half-
centreline velocity in a decelerating air jet. In diesel jets, Doudou (2005) reported
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similar behaviour of velocity profiles, and both Bruneaux (2005) and Musculus et al.
(2007) observed that the scalar jet boundaries increase only gradually during and after
the deceleration transient. Shadowgraph movies of non-combusting diesel jets also
show that the perimeter of the jet does not markedly change during the deceleration
transient, though it does gradually increase thereafter (Pickett 2009). Based on
the above consistent experimental observations, as a reasonable approximation, the
spreading angle during and after the deceleration transient is treated as constant at
the same value as that of the steady jet. As the residual jet flow evolves and gradually
widens after the end of the transient, the assumption of a constant spreading angle
becomes less valid, the implications of which are examined in a later section.

(vi) The radial profile of mean axial velocity, and hence β , remains unchanged
during the deceleration transient. Experimental measurements in both decelerating
air jets (Atassi et al. 1993) and decelerating diesel jets (Doudou 2005) support this
assumption, showing very similar profiles for a reasonable time after the transient.
Additionally, Bremhorst (1979) reported that the velocity profiles in a variety of
modulated jets, which have periodic variations in injection velocity, also remain
comparable to those of a steady jet, even with large-amplitude fluctuations.

Accepting the above assumptions, a simplified integral momentum transport
equation in the axial direction for the differential control volume in figure 1 may
be written as

∂M

∂t
= −∂Ṁ

∂x
dx. (2.8)

Using (2.2) and (2.4) and simplifying, (2.8) becomes

∂

∂t

⎛
⎝

√
ρAṀ

β
dx

⎞
⎠ = −∂Ṁ

∂x
dx.

Noting that ∂
√

Ṁ/∂t = (∂Ṁ/∂t)/(2
√

Ṁ) and that neither ρ and β nor A change with
time (from assumptions (i), (v) and (vi)), and rearranging, yields a partial differential
equation for Ṁ:

∂Ṁ

∂t
= −2

√
βṀ

ρA

∂Ṁ

∂x
. (2.9)

Equation (2.9) is a nonlinear first-order wave equation, with local wave speed

cwave =2
√

βṀ/ρA. It is also instructive to express the wave speed in (2.9) in terms of
the mean velocity ¯̄u, using (2.4),

∂Ṁ

∂t
= −2β ¯̄u

∂Ṁ

∂x
, (2.10)

so that the local wave speed is cwave = 2β ¯̄u. As will be shown later, because of the
lack of an axial pressure gradient (assumption (iv)), the axial velocity may be solved
from the form of the momentum equation in (2.10), independent of the continuity
equation. After (2.10) is solved, the continuity equation effectively provides a solution
for the amount of entrainment necessary to maintain a zero axial pressure gradient
and a constant spreading angle, as described in the following section.

2.2. The entrainment wave

Applying continuity to the differential control volume in figure 1, the entrainment
rate ∂ṁe/∂x (entrained mass flux ṁe per unit axial distance) is the axial derivative of
the axial mass flux in the jet (Crow & Champagne 1971; Hinze 1975). The axial mass
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flux ṁ is

ṁ = ρA¯̄u =

√
ρAṀ

β
, (2.11)

so the entrainment rate is

∂ṁe

∂x
=

∂ṁ

∂x
=

√
ρ

β

(
√

A
∂

√
Ṁ

∂x
+

√
Ṁ

∂
√

A

∂x

)
. (2.12)

For later analysis, it is useful to define the entrainment rate for a steady jet. In a
steady jet, the momentum flux gradient ∂Ṁ/∂x is zero, and using A= π (tan (θ/2) x)2

according to the illustration in figure 1, the steady-jet entrainment rate is

∂ṁe,steady

∂x
=

√
πρṀ0

β
tan

(
θ

2

)
, (2.13)

where Ṁ0 is the momentum flux at the nozzle.
When a perturbation ∂Ṁ

/
∂t is introduced, (2.10) shows that an axial momentum

flux gradient ∂Ṁ/∂x must arise. During the deceleration transient, the ∂Ṁ/∂t

perturbation at the nozzle is negative, so (2.10) shows that the momentum flux
gradient becomes locally positive. Then, according to the continuity considerations in
(2.12), with positive ∂Ṁ/∂x, the entrainment rate must increase over that for a steady
jet.

With a positive ∂Ṁ/∂x in a decelerating jet, the momentum throughout the flow
is affected by the passage of a wave, according to (2.10). This wave is not an
acoustic wave but rather an ‘entrainment wave’, as it arises from the effects of
entrainment on the momentum gradient. Momentum exchange with entrained fluid,
which has negligible momentum in the axial direction, causes a reduction in the jet
axial velocity in the upstream region in which entrainment is greater than in the
downstream, initially steady jet. This reinforces the axial momentum flux gradient
∂Ṁ/∂x introduced at the nozzle and propagates it downstream.

Unlike an acoustic wave, whose speed is a function of the material properties, the
speed of the entrainment wave is a multiple of the flow speed, as described by (2.10).
But somewhat akin to an acoustic wave, the entrainment wave is ‘faster’ than the
‘mean’ material velocity ¯̄u. Indeed, the entrainment wave is also faster than the initial
jet penetration rate. As described by Naber & Siebers (1996), the penetration rate
of the head of the jet can be expressed as the ratio of momentum and mass fluxes.
Using (2.4) and (2.11), the penetration rate of the head of the jet is

cHead =
d

dt
(x ′

Head ) =
Ṁ

ṁ
= βū =

√
βṀ

πρ

cot(θ/2)

x ′
Head

, (2.14)

where x ′
Head is the downstream position of the head. Equation (2.14) may be solved

for the penetration distance x ′
Head by integration:

x ′
Head =

(
βṀ

πρ

)1/4

(2 cot(θ/2) · t)1/2. (2.15)

Using θ =28◦, (2.15) agrees well with established correlations for gas-jet penetration
(e.g. Hill & Ouellette 1999) and entrainment (Ricou & Spalding 1961), as well with
typical velocity profile widths (Hinze 1975). Comparing (2.14) with the wave speed
in (2.10), we see that the propagation speed of the momentum transient is twice the
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Figure 3. Measured ensemble-averaged centreline hot-film velocity data in a single-pulsed
air jet issuing from a 1.35 mm diameter nozzle at 103.5 m s−1 (from Witze 1980, 1983).

initial jet penetration rate. As a result, (2.10) shows that the momentum transient
of a decelerating jet will ‘catch up’ with the head of the jet at a time of about two
pulse durations after the start of a single transient-jet pulse. There is only limited
published experimental data to validate this derivation, but the available evidence
reviewed below is consistent with (2.10) relative to (2.14).

First, Witze used hot-wire anemometry to measure centreline velocities at various
axial positions in single-pulsed air jet issuing from a nozzle of diameter D0 = 1.35 mm
(Witze 1980, 1983). Using fast valve actuation (velocity 1/e rise time approximately
0.1 ms, fall time approximately 0.2 ms), the air jet rapidly reached a nozzle velocity of
u0 = 103.5 m s−1 and ended abruptly after about 4 ms. Figure 3 shows ensemble-
averaged centreline velocities measured at several downstream positions in the
transient jet. For each axial location, the velocity rises as the head of the jet arrives,
remains relatively steady for several milliseconds and then falls after the end of
injection. The head of the jet, marked here by the position at which the velocity
reaches its steady plateau, arrives at the 2.9 mm downstream position approximately
at time t = 0.95 ms, as indicated by the annotations in figure 3. At the 33.3 mm
downstream position, the head arrives at t = 2.55 ms or about 1.6 ms later.

At the tail end of the jet, the edge of the entrainment wave is indicated by the
departure from the steady velocity, where the momentum flux gradient becomes
non-zero. As identified by the annotations in figure 3, the entrainment wave arrives
at approximately t = 4.75 ms and t =5.55 ms for the two positions, for a difference
of 0.8 ms. Thus, these data show that the transit time for the entrainment wave at
the tail of the jet to cross from 2.9 to 33.3 mm downstream (0.8 ms) is half that of the
initial head of the jet (1.6 ms). This is consistent with the wave speed in (2.10) for the
entrainment wave, which propagates downstream at twice the initial jet penetration
rate of (2.14).

The decelerating air-jet data of Atassi et al. (1993) and Borée et al. (1996, 1997)
support (2.10) in another way. In their jet, the exit velocity at the nozzle was initially
held steady and then rapidly decelerated to half its initial value. As described in the
Appendix, the temporal and spatial gradients of velocity in the middle of the transient
are roughly consistent with (2.10). From continuity considerations, Borée et al. (1996,
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1997) also inferred from their axial-velocity measurements that the entrainment
velocity clearly increases during the transient, consistent with the discussion above
and with (2.12) for positive ∂Ṁ

/
∂x.

A third example is a two-phase diesel jet injected into an atmosphere of high-
molecular-weight sulphur hexafluoride, in which Doudou (2005) measured spray
droplet velocities throughout the injection event. After the end of injection, the
leading edge of the momentum transient, indicated by a departure of the centreline
velocity from that of the initial quasi-steady jet, travelled downstream approximately
twice as fast as the initial head of the jet. Furthermore, as shown in a later section,
the change in penetration rate that accompanies the arrival of the entrainment wave
at the head of the jet provides further evidence of the transit speed of the entrainment
wave.

Thus, both (2.10) and analysis of available experimental data show that the
momentum flux transient travels downstream at roughly twice the speed of the initial
penetrating jet. An important consequence of this conclusion is that the increased
entrainment associated with the jet deceleration not only affects the tail end of the
jet in the vicinity of the deceleration but rather eventually affects the entire jet as it
propagates downstream.

3. An analytical solution
3.1. Axial velocity

Equation (2.9) or (2.10) may be solved analytically using the method of characteristics
(Kevorkian 1996; Levandosky 2008). To do so, the value of β must be treated as
constant in time and space. Although β varies axially in the near-nozzle region (see
figure 1 and the related discussion), it is constant in most of the downstream jet. As
described in the previous section, in the downstream jet, β remains approximately
constant in time throughout the deceleration transient. A solution using constant β is
therefore appropriate for the entire developed portion of the jet (x/D0 > 8), but it is
increasingly inaccurate close to the nozzle exit when the fully developed value (β = 2)
is used.

Using a constant β and expressing the jet cross-sectional area A according to the
jet radius in figure 1, (2.9) may be written as

∂Ṁ

∂t
= −2 cot(θ/2)

√
β

ρπ

√
Ṁ

x ′
∂Ṁ

∂x
. (3.1)

The method of characteristics analysis shows that the general solution to (3.1) is√
Ṁ(x ′, t) = f (φ) , (3.2)

where the coordinate φ is

φ =
(
x ′)2 − 4 cot

(
θ

2

)√
β

πρ

√
Ṁt. (3.3)

While (3.2) and (3.3) comprise a valid general solution to (3.1), a more mathematically
convenient solution to (3.1) uses an inverse function of (3.2):

φ = g(
√

Ṁ). (3.4)
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To solve (3.1), an appropriate function g(
√

Ṁ) must be selected to satisfy the velocity
boundary conditions at the nozzle exit during the deceleration transient. One candidate
function is a second-order polynomial:

g(
√

Ṁ) = A(
√

Ṁ)2 + B
√

Ṁ + C. (3.5)

For the above function, three points during the transient are required to define A, B
and C for the boundary condition at the nozzle exit, where x ′ = x0 (figure 1). First, at
the beginning of the deceleration transient (t = 0), the velocity at the nozzle is equal
to that of the initial steady jet, which implies

√
Ṁ =

√
Ṁ0. Second, at some time

t1/2 after the start of the transient, the velocity at the nozzle falls to one half of its

initial value, or
√

Ṁ =
√

Ṁ0/2. Third, at the end of the transient, the velocity is zero
at the nozzle. Using (3.5) in (3.4) after determining A, B and C from the boundary

conditions, and using (3.3), gives an analytical solution for
√

Ṁ:

√
Ṁ =

√√√√(
t

2t1/2

− 1

)2
Ṁ0

4
− tan

(
θ

2

) √
πρṀ0

β

(x0)
2 − (x ′)2

8t1/2

−
(

t

2t1/2

− 1

) √
Ṁ0

2
.

(3.6)
The above solution applies within the transient region, i.e. where

φ0 = (x ′)2 − 4 cot

(
θ

2

) √
β

πρ

√
Ṁ0t < (x0)

2 . (3.7)

Outside the transient region,
√

Ṁ is equal to
√

Ṁ0 of the initial steady jet (which is
constant for x ′ > x0).

For Witze’s (1980) experiment, the exit velocity falls to one half its initial value
after approximately 0.15 ms, so t1/2 = 0.15 ms in (3.6) is appropriate for his jet. A
comparison of the centreline velocity, using (2.3) and (2.4) and the solution of (3.6),
with Witze’s experimental data is shown in figure 4. Several features of figure 4 merit
discussion.

First, for positions 13 mm and farther downstream, the axial decay of the centreline
velocity of the quasi-steady jet, where the centreline velocity is relatively constant, is
well captured by (2.6) with (2.1). This observation helps to validate the value of β = 2
for the velocity profile and the choice of θ = 28◦ for the spreading angle. For the
near-nozzle positions, at 2.9 and 7.9 mm downstream, values of β = 1.6 and β = 1.9,
respectively, were arbitrarily assigned to fit the steady velocity data, though these
values are roughly consistent with the typical values of β in the developing region
shown in figure 2.

A second important feature in figure 4 is that the timing of the arrival of the
momentum transient, marked by the departure from the quasi-steady velocity, is also
well captured. This feature is a consequence of the wave speed in (2.10). Third, the
decay rate of the centreline velocity after the arrival of the momentum transient
is described reasonably well, though the velocity solution is generally somewhat
greater than the measurements, as shown more clearly in the inset of figure 4. The
assumption of a constant spreading angle during the deceleration transient is likely
to give a larger velocity in the analytical solution. If the jet width were 15 % larger
during the transition, as the data of Atassi et al. (1993) indicate, then according
to (2.10), the velocity would be 15 % lower for a given momentum flux in the
solution. Furthermore, as described at the end of the Appendix, the slight velocity
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Figure 4. Ensemble-averaged measured data (symbols) and solution from (3.6) (solid lines)
for the pulsed air jet of Witze (1980, 1983) (also see figure 2). For all solutions, β = 2 (fully
developed jet) unless otherwise noted.

under-shoot observed in the decelerated jet data of Atassi et al. (1993) and Borée
et al. (1996, 1997) cannot be captured by (2.10), possibly indicating further limitations
of the constant-spreading-angle assumption in real transient jets. Nevertheless, the
characteristic features of the deceleration transient in Witze’s data in figure 4 are well
captured by (3.1) and its solution in (3.6).

Borée et al. (1996) also derived a partial differential equation for the axial velocity
on the centreline during the deceleration transient, somewhat akin to (2.10). They
postulated that velocity disturbances would propagate at the fastest velocity in the
jet, which is on the centreline. With their formulation, they used the method of
characteristics to predict the decay of the axial velocity quite well, though the timing
of the arrival of the momentum transient (i.e. the entrainment wave) was somewhat
late. They attributed the timing error to a failure to account for pressure effects, which
they argued would accelerate the disturbance.

Overall, the solutions of both the hyperbolic equation for centreline velocity of
Borée et al. (1996) and the first-order wave equation for integral momentum flux
employed here agree reasonably well with experimental data. It is interesting to
note that wave speed of (2.10) and the centreline velocity of (2.3) as used by Borée
et al. (1996) have similar magnitudes, though the wave speed derived here is not
directly a function of the centreline velocity. The wave speed in (2.10) depends only
on the integral momentum flux and not specifically on the local velocity anywhere in
the jet, including the centreline. It is therefore unclear if the physical effect governing
the speed at which the momentum transient is propagated downstream is the centreline
velocity, as argued by Borée et al. (1996), or rather the integral momentum flux relative
to the integral momentum, as derived here, in (2.10).

3.2. Entrainment rate

Some insight into the momentum exchange with ambient fluid that causes the velocity
decay during the deceleration transient may be gained by further consideration of the
analytical solution in (3.6). In the momentum-transient portion of the jet, using (3.6)
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Figure 5. (a) Entrainment rate relative to steady jet ((3.9), solid lines) or entrainment rate
per unit of injected fluid relative to steady jet ((3.14), dashed lines) for the simulated jet
of Witze (1980, 1983) at various times after the beginning of the deceleration transient.
(b) Cross-sectionally averaged jet velocity normalized by the jet exit velocity, which is also the
approximate mixture fraction.

for
√

Ṁ , the entrainment rate from (2.12) is
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Dividing (3.8) by (2.13) gives μ, the entrainment rate relative to that of the initial
steady jet:

μ =
(∂ṁe/∂x)
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1√
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⎤
⎥⎥⎥⎥⎦ . (3.9)

Using solution (3.6), the normalized entrainment rate of (3.9) is plotted as solid lines
in figure 5(a) at various times after the beginning of the deceleration transient for
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Witze’s jet. Figure 5(a) shows that during and after the deceleration transient, a wave
of increased entrainment (relative to the steady jet) travels downstream. The increased
entrainment in the solution is also supported by the experimental data of Borée et
al. (1996, 1997), which indicate that a region of increase in entrainment propagates
downstream during and after the transient deceleration in their air jet.

During the first millisecond of the transient in figure 5(a), the entrainment wave
grows in time, with the relative entrainment rate at its leading edge approaching a
value of μ =3. This asymptotic behaviour is consistent with (3.2) in the long-time
limit, completely independent of any assumed deceleration transient function (such
as (3.5)). To demonstrate the asymptotic behaviour of (3.2), it is first differentiated
with respect to x and using (3.3),

∂
√

Ṁ

∂x
=

∂f (φ)

∂φ

∂φ

∂x
=

∂f (φ)

∂φ

(
2x ′ − 4 cot(θ/2)

√
β

πρ
t
∂

√
Ṁ

∂x

)
.

Rearranging for ∂
√

Ṁ/∂x and substituting into (3.8) and using (3.3) for (x ′)2, the
entrainment rate is

∂ṁe

∂x
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√
πρ

β
tan(θ/2)

⎡
⎢⎢⎣√
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2(∂f (φ)/∂φ)
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1 + 4(∂f (φ)/∂φ) cot(θ/2)
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⎥⎥⎦ .

(3.10)

In the transient region, (3.4) and (3.5) show that φ is finite, so in the limit of t → ∞,
(3.10) becomes

∂ṁe

∂x
(t → ∞) = 3 tan(θ/2)

√
πρ

β

√
Ṁ. (3.11)

Equation (3.10) shows that early in the deceleration transient, the entrainment rate
is dependent on the gradient ∂f (φ)/∂φ of the velocity boundary condition at the
nozzle, but in the long-time limit, (3.11) shows that the influence of the boundary

condition disappears. Also, since
√

Ṁ increases with downstream distance within the
transient, (3.11) shows that the entrainment rate must also increase, as demonstrated
in figure 5(a). Finally, comparing (3.11) at the leading edge of the entrainment wave,
where Ṁ = Ṁ0, to the steady-jet entrainment of (2.13), we see that consistent with the
asymptotic behaviour illustrated in figure 5(a), the entrainment rate at the leading edge
of the entrainment wave in the long-time limit is three times that of the steady jet:

μEdge,t→∞ =
(∂ṁe/∂x) (edge, t → ∞)

(∂ṁe/∂x) (steady jet)
= 3. (3.12)

The implications of (3.12) are significant. Equation (3.12) is universal, in that none
of the physical characteristics of the jet appears – neither the jet spreading angle nor
the boundary conditions affect the limiting behaviour. Therefore, for the simplifying
assumptions employed here, the peak entrainment rate at the sharp leading edge of
the entrainment wave universally and asymptotically approaches three times that of
the initial steady jet in the long-time limit.

The rate at which the entrainment wave reaches the limiting entrainment rate
expressed in (3.12) depends on the deceleration rate. With a longer t1/2 in (3.6), which
implies smaller ∂f (φ)/∂φ in (3.10), the entrainment rate reaches the limiting behaviour
more slowly. Witze’s jet has a relatively short t1/2 (0.15 ms), so the entrainment
rate approaches the limiting behaviour quickly, within the measurement region. By
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Air jet Air jet Diesel
Experiment Witze (1980) Borée et al. (1996) Cossali et al. (1996)

Injected ρ (kg m−3) 1.2 1.2 820
Ambient ρ (kg m−3) 1.2 1.2 5.06
Nozzle diameter (mm) 1.35 5 0.25
Effective diameter (mm) 1.35 5 3.2
Peak velocity (m s−1) 103.5 40 ∼270
t1/2 (ms) 0.15 10 ∼0.8
Source figure – 13 6b
Downstream distance (mm) 92 200 57.5
Time after peak velocity (ms) 3 10 0.25
Measured peak μ (−) – ∼1.7 ∼1.2
Calculated peak μ (−) 2.82 1.67 1.27

Table 1. Comparison of measured and analytical peak entrainment rate increase.

contrast, the decelerating jet of Borée et al. (1996, 1997) has a slower deceleration,
with t1/2 near 10 ms. As shown in table 1, using the parameters for their jet in
(2.12), including t1/2 = 10 ms, at a distance of 200 mm downstream (40 diameters),
μ reaches a value of 1.67, significantly less than the limiting value of μ = 3. Their
measured data are consistent, showing a 70 % increase in entrainment at 40 diameters
downstream (Borée et al. 1996). In diesel jets, the data of Cossali et al. (1996) also
show significantly lower peak entrainment rates than (3.9), within their measurement
region. As shown in table 1, the deceleration transient in Cossali et al. (1996) was
relatively slow, so that the peak entrainment rate increased by only 20 % within the
downstream range of their measurements. The predictions from (3.9) for such slow
injection ramp-down rates show that the relative entrainment rate does not approach
the asymptotic value of three within the measurement region. Note that for the
diesel jets, to account for the difference in the density of the injected and ambient
fluids, the effective (Ricou & Spalding 1961) or momentum (Nathan et al. 2006)
diameter deff = d0 ·

√
ρinj/ρambient was used in (3.9). Modern diesel injectors typically

have t1/2 = 0.2 ms or less, so that the peak entrainment rate can reach μ = 2 or more
within the combustion chamber. The data from Cossali et al. (1996) also show that
the increase in entrainment due to the entrainment wave is imperceptible near the
nozzle, but it increases to a measurable level farther downstream, as shown by (3.9).
Similar behaviour was observed in a three-dimensional computational study by Iyer &
Abraham (2003), who simulated the experiments of Cossali et al. (1996). They found
that when using a rapid deceleration, the spike in the computed entrainment velocity
after the deceleration transient increased with downstream distance. When they used
a slower deceleration rate more representative of the experimental conditions, the
spike in entrainment became much less pronounced.

To further explore the entrainment wave and to better understand its behaviour,
more experimental measurements of the entrainment rate in both single-phase jets
and diesel sprays would be helpful. Since the entrainment wave develops more rapidly
in jets with more rapid deceleration transients, measurements from such jets would
be most valuable. In addition to the rate at which the limiting behaviour of (3.11)
is approached, real jets do not show such a sharp peak in the entrainment profile
as that shown in figure 5(a). Rather, the peak in entrainment is much broader than
in figure 5(a) for both the air jets of Borée et al. (1996, 1997) and the diesel jets
of Cossali et al. (1996). It is likely that the turbulent axial diffusion processes in
real jets, which were excluded in the development of (2.10) (assumption (iii)), act to
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broaden the sharp leading edge of the entrainment wave. As a result, the transition
at the leading edge of the entrainment wave is smoothed, and the peak entrainment
rate in real jets should not be so large as shown in figure 5(a). Even if real mixing
processes reduce the ‘peak’ entrainment rate at the leading edge of the entrainment
wave, however, continuity still demands that as long as the constant spreading angle
is maintained, the ‘total’ increase in entrainment integrated over the transient region
must be the same as for the sharp entrainment-wave solution. Thus, in real jets, the
total entrainment during the transient is not reduced by axial mixing – it is only
redistributed along the jet axis compared to the solution in figure 5(a).

The mean velocity ¯̄u in the jet may be determined from the
√

Ṁ solution of (3.6),
using (2.4) and β =2 (fully developed), which is appropriate for all but the near-nozzle
region. The mean velocity solution from (3.6), normalized by the jet exit velocity, is
plotted in figure 5(b). As a result of applying a uniform β throughout the jet, the
normalized velocity does not approach unity at the nozzle but rather

√
1/β . (Using

β = 1, which is appropriate for the uniform velocity profile at the nozzle, would
have produced unity normalized velocity at the nozzle.) Also, a log scale is used in
figure 5(b) to improve readability for the low velocities that exist in most of the jet.

As the entrainment wave in figure 5(a) passes, the velocity in figure 5(b) immediately
falls below that of the steady jet. As the local velocity is reduced over time because of
the increased entrainment of low-momentum ambient fluid, the local velocity gradient
(or, equivalently, the ∂

√
Ṁ/∂x gradient) is also reduced. Hence, according to (2.12),

the local entrainment rate must decrease as well. As a result, after the entrainment
wave passes, the jet fluid becomes increasingly stagnant, so that the local entrainment
rate approaches zero. In the long-time limit, therefore, the entrainment wave leaves
in its wake a stagnant jet with an absolute entrainment rate approaching zero.

Finally, with knowledge of the peak magnitude of the increased entrainment rate,
the earlier assumption that the axial pressure gradient in the decelerating jet is
negligible may be examined. The entrained gas velocity ūe at the jet boundary is the
entrainment rate divided by the product of the density and the jet circumference:

ūe(edge, t → ∞) =
(∂ṁe/∂x)(t → ∞)

ρ · (2πR)
=

3 tan(θ/2)
√

(πρ/β)
√

Ṁ

2ρπ tan(θ/2)x ′ =
3
√

(Ṁ/πρβ)

2x ′ .

Using (2.4), the ratio of the entrainment velocity to the jet mean cross-sectionally
averaged axial velocity is

ūe

¯̄u
=

3
√

(Ṁ/πρβ)

2x ′√
(Ṁ/πρβ)(cot(θ/2)/x ′)

=
3 tan(θ/2)

2
.

With θ =28◦, the entrainment velocity in a steady jet is about 37 % of the jet mean
cross-sectionally averaged axial velocity (or, using (2.3) in the fully developed jet,
about 10 % of the centreline axial velocity). Applying the Bernoulli equation outside
of the jet boundary, where viscous effects are negligible, we see that the inertial term
of the entrainment flow relative to that of the fully developed jet flow (using β = 2) is

1
2
ρ(ūe)

2

1
2
βρ(¯̄u)2

=
9 tan2(θ/2)

4β
= 0.07. (3.13)

Equation (3.13), along with the equivalence of the inertial terms with pressure (from
Bernoulli), show that the static pressure difference between the far field ambient and
the jet boundary, as defined here, is about 7 % of the mean stagnation pressure of
the axial jet flow. Therefore, if the sharp leading edge of the entrainment wave with
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three times the steady-jet entrainment rate is maintained, the pressure drop relative
to the ambient becomes significant (7 %) and could have a significant affect on the
solution. But, as described above, finite injection ramp-down rates and axial mixing
in real jets reduce and broaden the leading edge of the entrainment wave, so that the
peak entrainment rate may only be twice that of a steady jet, or even less. With a
factor of two or less local increase in entrainment, the pressure difference is only 3 %
or less of the mean stagnation pressure of the jet flow. (Incidentally, in a steady jet,
the constant pressure assumption is well justified, since (3.15) for the steady jet shows
that the pressure difference from ambient is less than 1 % of the mean stagnation
pressure of the jet flow and that the axial gradient in pressure is very small.)

3.3. Scalar mixing

In addition to the effects of the deceleration transient and entrainment wave on
jet momentum, the effects on scalar mixing may be estimated from the axial-velocity
solution. To illustrate the general behaviour of scalar mixing, a simplifying assumption
of unity Schmidt number may be applied. Then, the jet fluid is transported equally
with velocity, so that the local mixture fraction can be represented by the local axial
velocity relative to the original nozzle exit velocity. That is, for unity Schmidt number,
the normalized cross-sectionally averaged velocity ¯̄u/u0 in figure 5(b) also represents

the cross-sectionally averaged mixture fraction ¯̄Z. An additional assumption in using
¯̄Z ≈ ¯̄u/u0 is that all of the jet fluid initially carried the same momentum. This
assumption is true for all of the fluid in the initial steady jet but not for fluid injected
during the deceleration transient. Assuming that the amount of fluid in the rapidly
ending transient is relatively small, however, the equivalence of mixture fraction with
the normalized axial velocity is justified for nearly all of the downstream jet. Only in
the near-nozzle region is the mixture fraction not well represented by the normalized
axial velocity.

Interpreting the normalized velocity plots in figure 5(b) as mixture fraction, during
and after the deceleration transient, the mixtures in the jet are rapidly diluted with the
ambient fluid as the entrainment wave propagates downstream. Indeed, less than 1 ms
into the deceleration transient, the axial mixture fraction gradient transitions from
negative to a positive. That is, within the wake of the entrainment wave, the upstream
mixture fraction becomes lower than downstream, which is opposite to mixtures in a
steady jet. This trend agrees well with fuel concentration measurements in decelerating
single-phase jets (Borée et al. 1997; Johari & Paduano 1997) and two-phase diesel jets
(Kim & Ghandhi 2001; Bruneaux 2005; Musculus et al. 2007; Genzale et al. 2008).
Incidentally, as described in the introduction, the opposite behaviour is observed in
‘accelerating’ jets, where the momentum flux ∂Ṁ/∂t at the nozzle is positive, so the
momentum flux gradient ∂Ṁ/∂x is negative. According to (2.12), the entrainment
rate is then lower relative to a steady jet, so that the mixture fraction increases, as is
observed experimentally (Kato et al. 1987; Zhang & Johari 1996).

In addition to analysing the behaviour of the absolute entrainment rate, it is also
interesting to study the rate of entrainment per unit of injected fluid (e.g. fuel).
The mixing per unit of injected fluid (∂ṁe/∂mf ) can be expressed as the ratio of
the entrainment rate (∂ṁe/∂x) to the local axial gradient of injected fluid in the jet
(∂mf /∂x). As shown in (2.12), the entrainment rate ∂ṁe/∂x, or entrainment per unit
distance, is the axial gradient of mass flux. In a parallel fashion, the local mass of
fluid in the jet per unit distance ∂m/∂x can be represented by the axial gradient of
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the mass of jet fluid:

∂m

∂x
=

∂

∂x
(ρV ) = ρA.

The local mass per unit distance of ‘injected’ fluid is then the product of ∂m/∂x and
the local cross-sectionally averaged mixture fraction ¯̄Z. As described above, ¯̄Z may
be approximated by the normalized velocity ¯̄u/u0, and since the local area is the same
for the steady jet and the transient jet (assumption number five), the entrainment rate
per unit of injected jet fluid in the transient jet relative to that of the steady jet (μZ)
is

μZ =
(∂ṁe/∂x)/ρA ¯̄Z

(∂ṁe,Steady/∂x)/ρA ¯̄ZSteady

=
¯̄uSteady/u0

¯̄u/u0

μ =

√
Ṁ0√
Ṁ

μ. (3.14)

In figure 5(a), the μZ solution at several times after the start of injection is plotted as
the dashed lines. The solutions are not plotted upstream of 10 mm from the nozzle
exit because of the inaccuracies of equating relative velocity with mixture fraction in
the near-nozzle region in which the initial momentum carried by the injected fluid
is not constant, as described earlier. After normalizing by the local mixture fraction
relative to that of the steady jet, figure 5(a) shows that the relative entrainment rate
per unit of injected fluid in the wake of the entrainment wave is nearly constant
axially.

The above solution is also consistent with the entrainment rate of (3.10) in the
long-time limit, even away from the leading edge of the entrainment wave. Using
(3.14) with (3.10) as t → ∞,

μZ = 3. (3.15)

Thus, even though the relative entrainment rate of (3.9) decreases after the passage
of the entrainment wave, the relative entrainment rate ‘per unit of injected fluid’ of
(3.15) asymptotes to a factor of three higher than in the initial steady jet. Furthermore,
figure 5(b) shows that the μZ value is reached throughout the entire wake of the
entrainment wave, even in regions in which μ is less than in a steady jet. The μZ

value is relatively constant in the wake of the entrainment wave because regions with
a lower entrainment rate have proportionally lower concentrations of injected fluid,
so that the normalized entrainment rate is unchanged. The factor-of-three increase in
the mixing rate behind the entrainment wave is also consistent with molecular mixing
measurements by Johari & Paduano (1997) for a gravity-driven water jet. Based on
a reduced reaction length for their single-pulsed jet compared to a steady jet, they
concluded that the mixing rate was increased by more than a factor of two after the
deceleration phase.

The reader is cautioned that the above conclusions about the increase in entrainment
after the passage of the entrainment wave must be interpreted carefully. Equations
(3.9) and (3.12) do not imply that the total entrainment rate integrated over the
whole jet increases by a factor of three compared to a steady jet. Figure 5(a) shows
that entrainment is greater than a steady jet near the front of the entrainment wave,
but entrainment is much less behind it. Visual inspection (and numerical integration)
of figure 5(a) shows that the total entrainment rate, which is the area under any
of the relative entrainment curves, is not much greater than for a steady jet (area
under horizontal line at relative entrainment rate of unity). The entrainment wave
redistributes the entrainment to where it is ‘needed’, so that more entrainment occurs
in regions that have higher concentrations of injected fluid, and less entrainment
occurs in regions with lower concentrations of injected fluid. As a result, the local
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entrainment rate per unit of injected fluid eventually approaches three times that of
a steady jet, throughout the wake of the entrainment wave, as shown by (3.15).

The implications of the above observations for mixing after the end of fuel injection
in diesel engines are profound. It is well recognized that if combustion can be delayed
until after the end of fuel injection, the fuel has more time to premix with the in-
cylinder air before combustion, so that local fuel concentrations and subsequent soot
formation can be reduced. However, (3.15) shows that it is not simply the extended
‘time’ for premixing that is important, but rather the increase in the mixing ‘rate’ by
up to a factor of three throughout the jet because of the passage of the entrainment
wave that promotes premixing before combustion. If the rate of entrainment per unit
injected fluid after the end of injection were to remain the same as in the quasi-steady
jet, then the time required to achieve a desired level of premixing would be up to three
times greater. Such a relatively slow mixing rate would profoundly limit the potential
of modern diesel operational strategies to prepare mixtures necessary to achieve low
pollutant emissions in the time available before combustion. The threefold increase in
mixing following the end of injection must certainly play a role in soot oxidation and
late-cycle combustion processes as well. The ultimate soot emitted from the engine
is almost certainly reduced by increased oxidation due to the mixing enhancements
of the entrainment wave. Recognition of the considerable increase in the mixing rate
caused by the entrainment wave offers the possibility that fuel delivery strategies for
diesel engines could be designed and optimized to take advantage of it.

Also, the earlier conclusion that the rate of approach to the limiting entrainment
rate of μ = 3 is controlled by deceleration rate also indicates that the rate at which
the μZ = 3 asymptote is approached is affected by the injection rate shape in diesel
engines. This suggests that the injection rate shape may be tailored to deliver a desired
mixture distribution at a given time after the end of injection. Previous studies have
shown that for accelerating jets, the acceleration rate may be adjusted to decrease
mixing (Kato et al. 1987). Here, for decelerating jets, the deceleration rate may be
adjusted to increase mixing. If more mixing is desired, a faster deceleration rate should
be used. On the other hand, if less mixing is desired after the ending transient, such
as when mixtures can become too lean for complete combustion in diesel engines,
(Musculus et al. 2007), the deceleration rate could be decreased. More details of the
effects of the deceleration rate on mixing in diesel jets from a numerical solution of
a discretized wave equation may be found in Musculus & Kattke (2009).

Finally, the action of the entrainment wave is also likely to play a role in modulated
jets and flames, for which the nozzle exit velocity fluctuates over time. Modulated
jets typically have greater mean entrainment, and often greater spreading angles,
than steady jets (Bremhorst 1979), and modulated flames typically have shorter flame
lengths, indicating faster mixing (Lakshminarasimhan, Clemens & Ezekoye 2006). The
entrainment wave should be important especially in fully modulated jets, which reach
zero velocity at the nozzle between pulses and can have entrainment rates that are
several times greater than a steady jet (Bremhorst 1979; Bremhorst & Hollis 1990).
Also, the near-nozzle increase in momentum observed in fully pulsed jets (Bremhorst &
Hollis 1990) may be related to the action of the entrainment wave or its effect on
pressure (see (3.13)). The entrainment wave should be important even for partially
modulated jets and flames because (2.10) shows that a decrease in the exit velocity of
any magnitude will propagate downstream as an entrainment wave.

3.4. Post entrainment-wave penetration

One final issue worthy of investigation is the change in penetration rate caused by
the entrainment wave. As described earlier, the wave speed given by (2.10) is twice
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the jet penetration rate. This means that the entrainment wave reaches the head of a
single jet pulse at a time of approximately two pulse durations. When the entrainment
wave reaches the head of the jet, the increased entrainment of low-axial-momentum
ambient fluid reduces the velocity at the head from what it would be for a steady jet.

Consequently, the penetration function must decrease from the t1/2 dependence of
(2.15) to some slower rate. No analytical solution for the penetration rate after the
arrival of the entrainment wave is apparent, but it may be determined by numerical
integration.

Inserting the
√

Ṁ solution of (3.6) into (2.14), the penetration rate of the head after
the arrival of the entrainment wave is

cHead =

√
β

πρ
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x ′

⎡
⎢⎢⎢⎢⎣

√√√√(
t

2t1/2

− 1

)2
Ṁ0
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(3.16)
Using (2.15) for the penetration of the head of the jet until a time equal to two
injection durations and thereafter numerically integrating (3.16), the jet penetration
before and after the arrival of the entrainment wave at the head may be calculated.

For comparison with experimental data, penetration measurements of pulsed water
jets by Sangras et al. (2002) are offered. Most of the jets they studied had very short
injections that produced puffs of fluid dominated by the head vortex dynamics rather
than by quasi-steady-jet processes following in a temporarily sustained jet. Some of
their ‘intermittent’ jets with longer injection durations, however, had short quasi-
steady periods and are therefore marginally suitable for comparison. In particular,
their water jet with a nozzle diameter of 3.2 mm, a peak injection velocity of 1.85 m s−1

and an injection duration of 0.5 s is most appropriate. This jet has the largest injected
volume with the shortest starting and ending transients relative to the total injection
period, so that it has the longest well-developed quasi-steady-jet period of all those
that they studied. Even so, because of a slow starting transient as the injection
pump is started, the measured penetration data (symbols) in figure 6 show that the
penetration does not follow the t1/2 dependence of (2.15) until t = 0.4 s, which is near
the end of injection. Then, at t =1 s, which is approximately two pulse durations after
the start of the pulse, the penetration function changes to a roughly t1/4 dependence
(Sangras et al. 2002). Sangras et al. (2002) derived a t1/4 penetration relation for
puffs by considering the growth of an isolated vortex ball containing the conserved
momentum of the puff. The penetration rate in (3.16), which was derived from the
solution to the nonlinear wave equation of (3.1) and does not consider any vortex ball
dynamics, also captures the transition to t1/4 dependence. Solutions of (2.15) (prior
to t = 1 s) and the numerical integration of (3.16) (after t = 1 s) are plotted in figure
6 as the solid line. The penetration solution exceeds the experimental measurements
because it does not account for the slow start-up of the pump in the experiment. The
penetration solution parallels the experimental data, however, so that the timing of
the transition, along with the t1/2 and t1/4 slopes for the two phases of penetration, is
clearly apparent and well captured by (2.15) and (3.16).

The solution of (3.16), as well as insight into of the experimental data of Sangras
et al. (2002) based on the entrainment-wave concept presented here, shows that jet
penetration can be affected in a predictable way according to the timing of the
deceleration transient – the penetration rate will decrease markedly after two pulse
durations. This observation is important for diesel engines because jet over-penetration
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Figure 6. Penetration data (circles) and solutions from (2.15) and (3.16) (solid lines) for an
intermittent water jet of Sangras et al. (2002), as described in the inset.

can be problematic. When the fuel is injected early in the compression stroke, the
penetration rate increases because the ambient gases have low density. Furthermore,
the in-cylinder temperatures are also low, so the fuel vaporization rate is reduced. As a
result, the jet penetrates faster and evaporates later, so that liquid fuel may impinge on
and interact with the walls of the combustion chamber, which is generally undesirable
because of emissions problems (Kashdan, Mendez & Bruneaux 2007) or lubrication oil
dilution (Akagawa et al. 1999). To mitigate these liquid–wall interaction problems, the
jet penetration may be reduced if the entrainment wave is properly timed to reach the
head of the jet before it reaches the in-cylinder surfaces. In addition to slowing
the penetration rate, the increase in mixing from the entrainment wave promotes
faster fuel vaporization, so that the fuel may be entirely in the vapour phase by the
time the jet impinges on in-cylinder surfaces. Both of these effects are most likely
already in effect for diesel engines. Even so, with recognition of the importance and
magnitude of these mechanisms, diesel fuel-injection strategies may be better designed
and optimized to take advantage of the increased mixing caused by the entrainment
wave.

4. Summary
A simplified one-dimensional analysis was applied to the decelerating phase of a

transient incompressible jet. Based on observations from experiments in the literature,
six simplifying assumptions were applied in the analysis: (i) density is constant;
(ii) viscous forces outside the control volume are neglected; (iii) axial diffusive mixing
is neglected; (iv) the axial pressure gradient is negligible; (v) the jet cross-sectional
area remains constant throughout the deceleration transient; and (vi) the radial
profiles of axial velocity remain constant during the transient. Using these simplifying
assumptions, a transport equation for the integral momentum flux was derived,
which had the form of a first-order nonlinear wave equation. Using the method
of characteristics, an algebraic analytical solution was offered for a generic initial
condition function. Key conclusions from analysis of the solution and its governing
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transport equation are as follows:
(i) The solution shows that during and after the deceleration transient, a wave

of increased entrainment travels downstream at twice the jet penetration rate. As a
result, the increased entrainment associated with the jet deceleration not only affects
the tail end of the jet in the vicinity of the deceleration but rather eventually affects the
entire jet as it propagates downstream. The timing of the arrival of this entrainment
wave at the jet head, as well as the velocity decay rate in its wake, agrees well with
experimental data.

(ii) The peak entrainment rate at the leading edge of the entrainment wave
increases with downstream distance. In the long-time limit, the peak entrainment rate
approaches an asymptotic limit that is three times the rate of the initial steady jet.

(iii) The rate at which the asymptotic entrainment rate is approached depends
on the speed of the deceleration transient. Slow transients may not approach the
asymptotic value within the region of interest. This implies that the deceleration rate
may be tailored to produce a desired mixing distribution at a given time after the
deceleration transient.

(iv) In the wake of the entrainment wave, the absolute entrainment rate decays to
a level below that of the steady jet. However, the entrainment rate relative to the local
concentration of injected fluid, which is effectively the mixing rate, remains relatively
constant throughout the wake of the entrainment wave, at a level up to three times
higher than in the initial steady jet.

(v) After the arrival of the entrainment wave at the head of the jet, the penetration
rate transitions from a square-root dependence on time, which is typical of a steady
jet, to a fourth-root dependence on time. A similar transition is also observed in
experiments.

This work was performed at the Combustion Research Facility, Sandia National
Laboratories, Livermore, CA. Sandia is a multi-programme laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security
Administration of the US Department of Energy (DOE) under contract DEAC04-
94AL85000. Financial support was provided by DOE’s Office of Vehicle Technologies,
programme manager Gurpreet Singh. The author expresses his gratitude to Andy
Lutz of Sandia National Laboratories and John Abraham of Purdue University,
whose critical discussions helped greatly to shape this effort, and to O. C. Kwon, for
graciously providing access to the raw data used in figure 6.

Appendix. Decelerated air-jet analysis
The decelerated air-jet data of Atassi et al. (1993) and Borée et al. (1996, 1997)

is suitable to test the form of the governing nonlinear wave equation in (2.10) by
examining the local temporal and spatial gradients of velocity in the middle of the
transition. Among their measurements, Borée et al. (1996, 1997) reported temporal
data of mean axial velocity ūc(x, t) on the jet centreline, normalized by the centreline
axial velocity ūc(x, t = 0) of the initial steady jet, at several downstream locations,
plotted versus the ratio of the downstream distance x to the nozzle diameter D0,
as shown in figure 7. Their air jet issued from a nozzle of diameter D0 = 5 mm at
an initial velocity of U0,1 = 40 m s−1. The velocity at the nozzle exit (x/D0 = 0) then
decelerates to a lower velocity of U0,2 = 20 m s−1 over a period of about 10 ms, starting
at t = 55 ms. Farther downstream in the jet, the departure from the steady velocity
occurs later, as the entrainment wave travels downstream. To analyse the local speed
of the transient using the velocity data in figure 7, (2.10) must be rewritten in terms
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Figure 7. Measured ensemble-averaged centreline hot-wire velocity data in an Red = 1.3×104
air jet issuing from a 5-mm diameter nozzle subject to deceleration from 40 to 20 m s−1 at the
nozzle exit, normalized by the initial steady-jet centreline velocities (With kind permission from
J. Boree and Springer Science + Business Media: Borée et al. 1996 (figure 4), c© Springer-Verlag
1996).

of the centreline velocity using (2.3) and (2.4):

∂(βρA¯̄u
2
)

∂t
= −cwave

∂(βρA¯̄u
2
)

∂x
. (A 1)

In (A1), cwave is the wave speed. Using (2.3) and noting that ∂A/∂x = 2A/x, (A1) may
be simplified and rearranged for cwave in terms of ūc:

cwave =
−(∂ (ūc)/∂t)

(ūc/x
′) + (∂ūc/∂x)

. (A 2)

Using (A2), the wave speed may be evaluated anywhere in the transient, rather than
only at its leading edge as in the previous analysis. For example at x/D0 = 40 and
t = 85 ms, where the centreline velocity in the transient is 60 % of that for the initial
steady jet, the gradients in (A2) may be evaluated using central differences with the
absolute velocities listed in the inset in figure 7:

∂ (ūc)

∂t
=

(2.6 − 5.2) m s−1

(95 − 75) m s
= −130 m s−2,

∂ (ūc)

∂x ′ =
4.3 − 3.6

(50 − 30) D0

= 7 s−1.

With ūc =3.9 m s−1, (2.10) predicts that the propagation velocity of the transient is

cwave =
130 m s−2

(3.9 m s−1/37.5 mm) + 7.8 s−1
= 4.6 m s−1.

Inspection of figure 7 shows that the 60 % position of the transient travels from
x/D0 = 30 at t = 75 ms to x/D0 = 50 at t = 97 ms. The average speed is then 4.5 m s−1,
which is only slightly less than the 4.6 m s−1 speed of (2.10) near x/D0 = 40. For a 1/x

dependence of axial velocity, however, the average velocity over a spatial interval from
x/D0 = 30 to x/D0 = 50 should be approximately 33 % greater than the instantaneous
velocity at the midpoint of the interval. The discrepancy is most likely due to real
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jet processes not captured by (2.10) and because of the constant-spreading-angle
and constant-β approximations that were applied during the transient. As described
earlier, Atassi et al. (1993) showed that in the middle of the transition, the velocity
profile becomes flatter and slightly wider, so that β decreases, while A increases by
up to 30 % (15 % increase in jet width), which causes the local ∂A/∂x to decrease.
The constant-spreading-angle and constant-β approximations fail to account for these
changes, so that (2.10) is somewhat inaccurate ‘within’ the transient. Analysis of the
propagation time of the transient (not shown here), however, show that (2.10) appears
to be reasonably accurate at the ‘leading edge’ of the transient, where the similar
velocity profile (constant-β) and constant-spreading-angle assumptions are more likely
to be reasonable. Nevertheless, both the propagation time and the propagation speed
analyses of experimental data show that the speed of the momentum transient of
(2.10) is reasonable and that the transient travels downstream at roughly twice the
speed of the initial penetrating jet.

Careful inspection of the decelerated jet data in figure 7 reveals one other important
limitation of the assumption of a constant spreading angle during the deceleration
transient. For each of the downstream measurement locations in the jet, the centreline
velocity falls to minimum that is as much as 30 % below that of the slower jet that
follows the initial steady jet. Note that this does not appear to be an artefact of an
undershoot in the injection velocity at the nozzle, since no undershoot was measured
at x/D0 = 0. Without a velocity undershoot in the initial condition, (3.1) is unable
to reproduce a velocity undershoot in the solution. The method of characteristics
solution in (3.6) effectively shifts the boundary condition function downstream with
time, in a nonlinear fashion. If the boundary condition function had no velocity
undershoot, it is therefore impossible for any method of characteristics solution of
(3.6) to reproduce the velocity undershoot observed in figure 7. Some real physical
effect not included in the analysis, such as the slight increase in the jet width, is likely
to be responsible for the velocity undershoot.
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